

Available online at www.sciencedirect.com

Tetrahedron Letters 46 (2005) 7519-7521

Tetrahedron Letters

The nitroalkene showing dual behaviors in the same reaction system

Motoki Asahara, Chika Shibano, Koichi Koyama, Mina Tamura, Yasuo Tohda, Nagatoshi Nishiwaki* and Masahiro Ariga*

Department of Chemistry, Osaka Kyoiku University, Asahigaoka 4-698-1, Kashiwara, Osaka 582-8582, Japan
Received 20 August 2005; revised 26 August 2005; accepted 31 August 2005
Available online 15 September 2005

Abstract—The nitroalkene moiety of 1-methyl-3,6,8-trinitro-2-quinolone showed dual behaviors in the same reaction system, namely electron-poor heterodiene and dienophile, and affording polycyclic products.

© 2005 Elsevier Ltd. All rights reserved.

The cycloaddition is one of the fundamental protocols for the construction of a new ring, which accompanies the formation of two bonds. Highly electron-poor nitroalkenes are excellent dienophiles leading to cycloadducts upon treatment with electron-rich dienes. Nitroalkenes also behave as heterodienes to form a cyclic nitronate (oxazine derivative) in the reaction with electron-rich alkenes, and this chemistry has been significantly developed by Denmark's group.² Although nitroalkenes reveal dual behaviors as mentioned above, these reactivities are not observed at the same time, since they require different conditions.³ Only single example is found in the literature, which yields both products under the same conditions; however, nitro substituted bicyclo[2.2.2]octane is formed from cyclic nitronate via [3,3]-sigmatropic rearrangement.⁴ In the present letter, we would like to give a nitroalkene showing dual behaviors in the same reaction system.

The 1-methyl-2-quinolone (MeQone) skeleton is often found as the partial structure of quinoline alkaloids that are isolated from the Rutaceae family. Not only naturally occurring MeQones but also unnatural derivatives have attracted recent attention with regard to biological and pharmacological properties. While modification of the MeQone is comparatively difficult because of its aromaticity, functionalization of 1-methyl-3,6,8-trinitro-2-quinolone (TNQ) is readily performed to afford various types of MeQones under mild conditions. The steric

Keywords: 1-Methyl-2-quinolone; Cycloaddition; Nitroalkene; Heterodiene; Dienophile.

repulsion between the 1-methyl and the 8-nitro groups distorts the framework of **TNQ**, which diminishes the aromaticity.⁸ As a result, the pyridone ring of **TNQ** behaves as the activated nitroalkene showing somewhat aromaticity.

When **TNQ** was treated with ethoxyethene 1 in the presence of triethylamine, pale brown solid was precipitated. The empirical formula C₂₁H₁₁N₇O₁₀ and the MS spectrum reveal that two molecules of TNQ and 1 are combined accompanied by the elimination of C₃H₆O₂ in addition to nitrous acid and water. Although low solubility of the product prevented the measurement of the ¹³C NMR, satisfactory ¹H NMR data were given, which showed simple spectrum in spite of large molecules. In the aromatic region, a couple of doublet signals appeared at 9.02 and 10.08 ppm (J = 2.4 Hz) and a singlet one at 10.39 ppm, and the integral value for the latter singlet was half of those for each doublet. These facts suggest that the product has a symmetrical structure, and a new aromatic ring was formed between two quinolone rings. Hence, the product was assigned to quinolino [3,4-b][1,9] diazaphenanthrene derivative 2^9 (Scheme 1).

Similar reaction using the same combination of reagents in the absence of triethylamine was conducted. In this case, cyclic nitronate 3 was isolated whose structure was determined by spectral and analytical data, ¹⁰ and was additionally confirmed by conversion to quinolones 4 having an acetal function (Scheme 2). Furthermore, signals for ethyl formate 5 were observed in the ¹H NMR of the reaction mixture of TNQ and 1 in the presence of triethylamine, which indicated that a retro Diels—Alder reaction proceeded. On the basis of these

^{*} Corresponding authors. Tel./fax: +81 729 78 3399; e-mail: nishi@cc.osaka-kyoiku.ac.jp

Scheme 1.

Scheme 2.

Scheme 3.

experimental facts, a plausible mechanism for the construction of polycyclic product is illustrated in Scheme 3.

The first step for the present reaction is a cycloaddition affording a cyclic nitronate 3. Triethylamine is considered to accelerate the prototropy from the 4-position to an oxygen atom of the nitronate 3, and then a retro Diels-Alder reaction occurs to give α,β -unsaturated oxime 6 with loss of ethyl formate 5. The cycloaddition of the oxime 6 with another molecule of TNQ followed by aromatization furnishes quinolinodiazaphenanthrene 2. In the former cycloaddition, TNQ behaves as the electron-poor heterodiene, to the contrary as the electron-poor dienophile in the latter cycloaddition. This consid-

eration was supported by the formation of diazaphenanthrene **8** from the reaction of **TNQ** with α,β -unsaturated oxime **7** in the presence of triethylamine (Scheme 4) though the isolation of intermediate oxime **6** was not successful.

In summary, the nitroalkene moiety of TNQ revealed dual behaviors of nitroalkene in the same reaction system at room temperature, which is a first example to the best of our knowledge. The present reaction furnishes useful information for the chemistry of nitroalkene and also of MeQones. Further study using TNQ is currently performed to synthesize polycyclic compounds, and results will be shown in due course.

TNQ + Ph
$$\stackrel{\text{Ph}}{\nearrow}$$
 OH $\stackrel{\text{NEt}_3}{\nearrow}$ O2N $\stackrel{\text{NO}_2}{\nearrow}$ NO $\stackrel{$

Scheme 4.

References and notes

- (a) Ono, N. The Nitro Group in Organic Synthesis; Wiley-VCH: New York, 2001, pp 231–301; (b) Perekalin, V. V.; Lipina, E. S.; Berestovitskaya, V. M.; Efremov, D. A. Nitroalkenes; Wiley-VCH: New York, 1994; pp 114–168.
- Denmark, S. E.; Thorarensen, A. Chem. Rev. 1996, 96, 137–166.
- (a) Terrier, F.; Sebban, M.; Goumont, R.; Hallé, J.-C.; Moutiers, G.; Cangelosi, I.; Buncel, E. J. Org. Chem. 2000, 65, 7391–7398; (b) Hallé, J.-C.; Vichard, D.; Pouet, M.-J.; Terrier, F. J. Org. Chem. 1997, 62, 7178–7182; (c) Denmark, S. E.; Kesler, B. S.; Moon, Y. C. J. Org. Chem. 1992, 57, 4912–4924.
- Wade, P. A.; Murray, J. K., Jr.; Shah-Patel, S.; Le, H. T. Chem. Commun. 2002, 1090–1091.
- Grundon, M. F. In *The Alkaloids: Quinoline Alkaloids Related to Anthranic Acid*; Academic Press: London, 1988; Vol. 32, pp 341–439.
- (a) Kumar, R. N.; Selvi, S. T.; Suresh, T.; Mohan, P. S. Heterocycles 2002, 57, 357–360; (b) McLaughlin, M. J.; Hsung, R. P. J. Org. Chem. 2001, 66, 1049–1053; (c) Bar, G.; Parsons, A. F.; Thomas, C. B. Tetrahedron 2001, 57, 4719–4728; (d) Boyd, D. R.; Sharma, N. D.; Barr, S. A.; Caroll, J. G.; Mackerracher, D.; Maolone, J. F. J. Chem. Soc., Perkin Trans. 1 2000, 3397–3405; (e) Ito, C.; Kondo, Y.; Wu, T. S.; Furukawa, H. Chem. Pharm. Bull. 2000, 48, 65–70.
- (a) Asahara, M.; Ohtsutsumi, M.; Tamura, M.; Nishiwaki, N.; Ariga, M. Bull. Chem. Soc. Jpn. 2005, 78, in press; (b) Asahara, M.; Katayama, T.; Tohda, Y.; Nishiwaki, N.;

- Ariga, M. Chem. Pharam. Bull. 2004, 52, 1334–1338; (c) Asahara, M.; Nagamatsu, M.; Tohda, Y.; Nishiwaki, N.; Ariga, M. J. Heterocycl. Chem. 2004, 41, 803–805; (d) Nishiwaki, N.; Sakashita, M.; Azuma, M.; Tanaka, C.; Tamura, M.; Asaka, N.; Hori, K.; Tohda, Y.; Ariga, M. Tetrahedron 2002, 58, 473–478.
- Nishiwaki, N.; Tanaka, C.; Asahara, M.; Tohda, Y.; Ariga, M. Heterocycles 1999, 51, 567–574.
- 9. 5,9-Dimethyl-6,8-dioxo-2,4,10,12-tetranitroquinolino[3,4-b]-[1,9]diazaphenanthrene (2): Mp >300 °C; ¹H NMR (400 MHz, DMSO-d₆, TMS): δ 3.48 (s, 6H), 9.02 (d, J = 2.4 Hz, 2H), 10.08 (d, J = 2.4 Hz, 2H), 10.39 (s, 1H); IR (KBr/cm⁻¹) 1705, 1695, 1608, 1538, 1463, 1346; MS (FAB): m/z 522 (M⁺+1). Anal. Calcd for C₂₁H₁₁N₇O₁₀: C, 48.37; H, 2.11; N, 18.81. Found: C, 48.04; H, 2.06; N, 18.52
- 10. Cyclic nitronate 3: Mp 148–155 °C (dec.); ¹H NMR (400 MHz, CDCl₃, TMS): δ 1.11 (dd, J=7.1, 7.1 Hz, 3H), 2.67 (ddd, J=14.3, 5.7, 3.7 Hz, 1H), 2.85 (ddd, J=14.3, 7.9, 3.9 Hz, 1H), 3.27 (s, 3H), 3.67 (dq, 9.7, 7.1 Hz, 1H), 3.95 (dq, 9.7, 7.1 Hz, 1H), 4.1–4.3 (br, 1H), 5.63 (dd, J=3.9, 3.7 Hz, 1H), 8.32 (d, J=2.4, 1H), 8.58 (d, J=2.4 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃, TMS): δ 14.5 (q), 29.6 (t), 32.9 (d), 35.0 (q), 66.2 (t), 101.9 (d), 115.6 (s), 120.9 (d), 123.4 (d), 123.8 (s), 131.0 (s), 136.2 (s), 144.5 (s), 157.8 (s); IR (KBr/cm $^{-1}$) 1703, 1608, 1551, 1481, 1346, 1142; MS (FAB): m/z 367 (M⁺+1). Anal. Calcd for C₁₄H₁₄N₄O₈: C, 45.90; H, 3.85; N, 15.30. Found: C, 46.16; H, 3.84; N, 15.31.
- Tohda, Y.; Yamawaki, N.; Matsui, H.; Kawashima, T.; Ariga, M.; Mori, Y. Bull. Chem. Soc. Jpn. 1988, 61, 461– 465